SPARThI
Scalable RDF Data Management Using Query-Centric Semantic Partitioning

Amgad Madkour (Purdue)
Walid G. Aref (Purdue)
Ahmed M. Aly (Google)
Motivation

- The astronomical growth of RDF data raises the need for **scalable** RDF management strategies.

- Efficient RDF **data partitioning** can significantly improve the **query performance** over cloud platforms.

- **Cloud platforms** provide shared memory, storage, and advanced data processing components that help manage **web-scale RDF**.
Problem Definition

- Vertical Partitioning (VP) is a **scalable** partitioning schema that can be used in cloud-based systems.

- However, **not all entries** of a VP are part of the **final result**.

- The non-matching entries cause computation and communication **overhead**.

```
SELECT ?x ?y WHERE {
  ?x :mention :Mary .
}
```

Original Data

| Original Data
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB</td>
</tr>
<tr>
<td>:John</td>
</tr>
<tr>
<td>:John</td>
</tr>
<tr>
<td>:Alex</td>
</tr>
<tr>
<td>:Alex</td>
</tr>
<tr>
<td>:Alex</td>
</tr>
</tbody>
</table>

Reductions

SUB	OBJ
:John	:Mary
:John	:Mike
:Alex	:Mary
:Sally	:Mike
:Mary	:John

Join(mention sub, tweet sub)

Join(tweet sub, mention sub)
Vertical Partitioning Model
Vertical Partitioning [Abadi et al. — VLDB 2009]

- Create **property-bound tables** consisting of two columns

Advantages
- Inspects the corresponding VP tables only
- Avoids the tuple-header reading overhead of row-stores when stored in a column store

Drawbacks
- Some partitions can account for a large portion of the entire graph
 - (i.e. Massive I/O)

Triples Table

<table>
<thead>
<tr>
<th>Subject</th>
<th>Property</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>mention</td>
<td>Mary</td>
</tr>
<tr>
<td>John</td>
<td>mention</td>
<td>Mike</td>
</tr>
<tr>
<td>John</td>
<td>tweet</td>
<td>T1</td>
</tr>
<tr>
<td>Mike</td>
<td>tweet</td>
<td>T2</td>
</tr>
<tr>
<td>Mike</td>
<td>tweet</td>
<td>T3</td>
</tr>
<tr>
<td>Alex</td>
<td>mention</td>
<td>Mary</td>
</tr>
<tr>
<td>Alex</td>
<td>tweet</td>
<td>T4</td>
</tr>
</tbody>
</table>

Tweet Table

<table>
<thead>
<tr>
<th>Subject</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>T1</td>
</tr>
<tr>
<td>Mike</td>
<td>T2</td>
</tr>
<tr>
<td>Mike</td>
<td>T3</td>
</tr>
<tr>
<td>Alex</td>
<td>T4</td>
</tr>
</tbody>
</table>
Proposal
Overview

• **Three Phases**

1. Property-based Partitioning
2. Partition Reduction
3. Query Processing
Proposal
High-Level Workflow

SPARTI

Query Workload

Input (Incremental)

Partition Reduction

Output

Input

Query Processing

RDF Dataset

Partition based on “property”

SemVP Tables

Subject

Object

Row-Level Semantics
Proposal
Property-Based Partitioning

- **SemVP** - A relational partitioning schema that extends VP’s
 - Partition RDF datasets based on property
 - Represent row-level semantics for every triple via *semantic filters*

- **Create Bloom filters** for every SemVP (subject and object)
 - Used later to compute reduced row-sets for specific query join patterns
Proposal
Partition Reduction

• Identify related properties from the query workload for every partition

• Identify join patterns in the query workload

• Compute a reduction using Bloom join between related properties based on the join patterns

• Store the result of the reduction as semantic filters
Proposal
Query Processing

• Identify the properties and join patterns in queries

• **Match** every property and query join pattern with a SemVP partition and a semantic filter, respectively

• In case a match is found, a semantic filter (representing the reduced set of rows) is read to answer a query **instead of** reading the entire partition for a property.
Challenges

• How to represent row-level semantics (semantic filters)

• How to efficiently compute reductions?

• How to select semantic filters that minimize network and disk IO?

• How to evolve based on the query-workload
Semantic Vertical Partitioning (SemVP)

- A relational partitioning schema that extends vertical partitioning with row-level semantics

- Consists of 2 columns: Subject, Object

- A Semantic Data Layer (SDATA) structure that stores triple semantics
Semantic Vertical Partitioning (SemVP)

Example

Figure: SemVP representing the mention property
Semantic Vertical Partitioning (SemVP)

Semantic Data Layer

- **Semantic Filters**
 - Used for determining triples that can are read to answer a specific query join pattern

- **Statistics**
 - Maintains statistics about the semantic filters

- **Bloom Filters**
 - Used for computing the semantic filters
Property Reduction

Example

SELECT ?x ?y WHERE {
 ?x :mention :John .
}

x=[:mention_S, :tweet_S]

Original Partitions

SF (ID: 1) : mention_S_JN_tweet_S

BF: mention_S

BF: tweet_S

SF (ID: 2) : tweet_S_JN_mention_S

Original Partitions

BF:

mention_S

BF:

tweet_S

Original Partitions

BF:

mention_S

BF:

tweet_S
Partition Reduction
Example: Property Relatedness

• Properties are considered related if they appear in the same query join pattern

• SPARTI utilizes the co-occurrence to determine which semantic filters should be computed

```
SELECT ?X ?Y ?Z
WHERE
{
  ?X type GraduateStudent .
  ?Z phdFrom ?Y .
  ?X mscFrom ?Y .
}
```
Evolution

• Evolution relates to when semantic filters are:
 ▪ Created – To reduce partitions of newly observed join patterns
 ▪ Deleted – To reduce disk space

• The cost of computing additional semantic filters can be inferred from the query-workload and the SemVP statistics
Cost Model

• Each SemVP partition maybe associated with hundreds of semantic filters

• A cost-model is needed in order to determine the importance of a semantic filter

\[Utility = \alpha(S) + \beta(R) + \infty(P) \]

• Where
 • S : Support (ie, frequency) of a join pattern within a query-workload
 • R : The partition size
 • P : Number of properties that the semantic filter includes
 • \(\alpha + \beta + \infty = 1 \)
Experimental Setup

- **Computational Framework**
 - Apache Spark

- **Storage**
 - HDFS

- **Datasets**
 - WatDiv Benchmark + Stress Workload
 - 100 Million, 1 Billion
 - YAGO
 - 200 M

- **Systems**
 - S2RDF
 - SPARTI
 - Vertical Partitioning
Results

Number of Rows

<table>
<thead>
<tr>
<th>Datasets</th>
<th>Original file</th>
<th>VP</th>
<th>SPARTI</th>
<th>S2RDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>WatDiv (100M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. Rows (Count)</td>
<td>1.E+02</td>
<td></td>
<td>1.E+04</td>
<td></td>
</tr>
<tr>
<td>WatDiv (1000M)</td>
<td></td>
<td></td>
<td>1.E+04</td>
<td></td>
</tr>
<tr>
<td>YAGO2s</td>
<td></td>
<td></td>
<td></td>
<td>1.E+04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datasets</th>
<th>Original file</th>
<th>VP</th>
<th>SPARTI</th>
<th>S2RDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>WatDiv (100M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. Rows (Count)</td>
<td>1.E+02</td>
<td></td>
<td>1.E+04</td>
<td></td>
</tr>
<tr>
<td>WatDiv (1000M)</td>
<td></td>
<td></td>
<td>1.E+04</td>
<td></td>
</tr>
<tr>
<td>YAGO2s</td>
<td></td>
<td></td>
<td></td>
<td>1.E+04</td>
</tr>
</tbody>
</table>
Results
Number of Files

Datasets
- VP
- SPARTI
- S2RDF

Number of Files (Count)

- WatDiv (100M)
- WatDiv (1000M)
- YAGO2s
Results

HDFS Size

![Graph showing HDF Size for different datasets and configurations. The x-axis represents the dataset (WatDiv 100M, WatDiv 1000M, YAGO2s) and the y-axis represents the storage size (GB). The graph compares the storage size for different datasets and configurations (VP, SPARTI, S2RDF).]
Results

Load Time

Load Time (Seconds)

Datasets

VP
SPARTI
S2RDF

WatDiv(100M) WatDiv (1000M) YAGO2s

Percentage (Time)

Property-Based Partitioning Partition Reduction

WatDiv(100M) WatDiv(1000M) YAGO2s
Results

Execution Time — WatDiv 1B

![Bar chart showing execution time for WatDiv queries on different systems: SPARTI, S2RDF, VP. The queries are categorized by complexity (Snowflake, Complex, Linear, Star).]
Results

Execution Time - YAGO
Results

Execution — WatDiv Stress Testing Workload

![Graph showing execution time for different workloads](image-url)
Conclusion

• We presented SPARTI, a **scalable** RDF data management system that utilizes a **relational scheme** and provides **row-level semantics** for RDF data.

• The row level semantics, represented as **semantic filters**, provide SPARTI with a mechanism to read a reduced set of rows when answering specific **query join-patterns**.

• The **cost-model** for managing semantic filters **prioritizes** the creation of the important semantic filters to compute.

• The **experimental study** that compares SPARTI with the state-of-the-art Spark-based RDF system demonstrates that SPARTI achieves **robust performance** over synthetic and real datasets.
Questions ?
BACKUP SLIDES